Structure Reports

Online

(Z)-3-[Hydroxy(2,4-dimethoxyphenyl)methylene]-1-isopropylpyrrolidine-2,4-dione

ISSN 1600-5368

Hai-Zhen Xu

College of Chemistry and Life Science, Tianjin Normal University, Weijin Road No. 241,
Tianjin, People's Republic of China

Correspondence e-mail: tj_xhz@126.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.112$
Data-to-parameter ratio $=15.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}$, is a potent new herbicide containing the pyrrolidine-2,4-dione ring system. In the crystalline state, the molecular skeleton contains one enol grouping, which is intramolecularly hydrogen bonded to a neighbouring keto O atom. The dihedral angle between the six-membered ring formed by the enol group and the benzene ring is $62.02(6)^{\circ}$.

Comment

Many compounds containing the 3-acylpyrrolidine-2,4-dione system are novel heterocyclic compounds with antibiotic activity; these include tenuazonic acid (Stickings, 1959), streptolydigin (Rinehart et al., 1963), tirandamycin (Rinehart et al., 1971), malonomycin (Van Der Baan et al., 1978), α cyclopiazonic acid (Stickings, 1959; van Rooyen et al., 1992) and β-cyclopiazonic acid (Holzapfel et al., 1970). All these compounds possess a 3 -acyltetramic acid grouping as a tricarbonylmethane fragment, and the ${ }^{1} \mathrm{H}$ chemical shift of the enol hydroxy group is about 11 p.p.m. (Wu et al., 2002). Most of the excellent inhibitors of p-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their two kinds of bioactivity (Zhu Hu \& Yang, 2004). Previously, we have synthesized a series of 3-(un)substituted benzoyl-1-alkylpyrrolidine-2,4-dione compounds and found that the title compound, (I), possesses high herbicidal activity. The structure of (I) reported here helps us to investigate the relationship between structure and herbicidal activity.

(I)

The molecular structure of (I) is shown in Fig. 1. Atom $\mathrm{H} 3 A$, involved in intramolecular hydrogen bonding between atoms O 2 and O 3 , was assigned to O 3 rather than to O 2 , on the basis of the bond lengths. The $\mathrm{C} 13-\mathrm{O} 2$ distance is 1.256 (2) \AA, which is longer than the normal carbonyl bond length $(\mathrm{C} 13=\mathrm{O} 1)$ of 1.216 (2) \AA. In contrast, the $\mathrm{C} 9-\mathrm{O} 3$ distance $[1.320(2) \AA]$ is intermediate between a normal carbonyl $\mathrm{C}=\mathrm{O}$ double bond and a $\mathrm{C}-\mathrm{O}$ single-bond length (Allen et al., 1987). A similar situation was reported for 3-(1-hydroxyethylidene)-1-phenylpyrrolidine-2,4-dione (Ellis \& Spek, 2001), 1-benzyl-3-(α-hydroxybenzylidene)pyrrolidine-2,4-dione, (II) (Zhu, Song, Li et al., 2004), 1-tert-butyl-3-(α -hydroxy-4-isopropylbenzylidene)pyrrolidine-2,4-dione, (III)

Figure 1
A view of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is indicated by a dashed line.
(Xu, 2005), and 3-(α-hydroxyl-2-methoxylbenzylidene)-1-isopropylpyrrolidine-2,4-dione, (IV) (Zhu, Song, Yao et al., 2004). The dihedral angle formed by the enol ring A with the benzene ring is $62.02(6)^{\circ}$, which is larger than the dihedral angles for (II), (III) and (IV) (10, 21 and 53°, respectively).

The crystal structure of (I) also involves one weak intramolecular and three intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonding interactions (Fig. 2 and Table 2).

Experimental

Compound (I) was obtained according to the procedure reported by Matsuo et al. (1980). Colourless single crystals of (I) were obtained by recrystallization of 1-isopropyl-3-(α-hydroxy-2,4-dimethoxylbenzyl-idene)pyrrolidine-2,4-dione from petroleum ether and ethyl acetate (1:3).

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}$
$M_{r}=305.32$
Monoclinic, $C 2 / c$
$a=21.288(4) \AA$
$b=12.132(2) \AA$
$c=13.767(3) \AA$
$\beta=121.790(3))^{\circ}$
$V=3022.0(10) \AA^{3}$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$
$\quad T_{\min }=0.972, T_{\max }=0.984$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.112$
$S=1.00$
3120 reflections
208 parameters
H atoms treated by a mixture of independent and constrained refinement

8407 measured reflections
3120 independent reflections
1894 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=26.5^{\circ}$

$Z=8$

$D_{x}=1.342 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Prism, colourless
$0.34 \times 0.24 \times 0.16 \mathrm{~mm}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0453 P)^{2}\right. \\
& +1.206 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.003 \text { 。 } \\
& \Delta \rho_{\max }=0.18 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0025 \text { (3) }
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

O1-C11	$1.216(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.373(2)$
O2-C13	$1.256(2)$	$\mathrm{C} 10-\mathrm{C} 13$	$1.452(2)$
O3-C9	$1.320(2)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2$	$0.862(10)$	$1.706(13)$	$2.531(2)$	$159(3)$
C14-H14 -O 2	0.98	2.52	$2.873(2)$	101
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.93	2.47	3.3286	153
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{O} 2$	0.96	2.58	3.4585	152
$\mathrm{C} 8-\mathrm{H} 8 C \cdots \mathrm{O} 3$	0.96	2.42	3.3767	172

The hydroxyl H atom (O3)H3A was found in a difference Fourier map and refined freely. The other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1999). SMART (Version 5.618), SAINT (Version 6.45) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Ellis, D. D. \& Spek, A. L. (2001). Acta Cryst. C57, 433-434.
Holzapfel, C. W., Hutchison, R. D. \& Wilkins, D. C. (1970). Tetrahedron, 26, 5239-5246.
Matsuo, K., Kitaguchi, I., Takata, Y. \& Tanaka, K. (1980). Chem. Pharm. Bull. 28, 2494-2502.
Rinehart, K. L., Beck, J. R., Borders, D. B., Kinstle, T. H. \& Krauss, D. (1963). J. Am. Chem. Soc. 85, 4038-4039.

Rinehart, K. L., Mackellar, F. A., Grostic, M. F., Olson, E. C., Wnuk, R. J. \& Branfman, A. R. (1971). J. Am. Chem. Soc. 93, 4943-4945.
Rooyen, P. H. van (1992). Acta Cryst. C48, 551-552.
Sheldrick, G. M. (1996). SADABS. Version 4.202. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stickings, C. E. (1959). Biochem. J. 72, 332-334.
Van Der Baan, J. L., Barnick, J. W. F. K. \& Bickelhaupt, F. (1978). Tetrahedron, 34, 223-231.
Wu, C.-S., Huang, J.-L., Sun, Y.-S. \& Yang, D.-Y. (2002). J. Med. Chem. 45, 2222-2228.
Xu, H.-Z. (2005). Acta Cryst. E61, o292-o294.
Zhu, Y.-Q., Hu, F.-Z. \& Yang, H.-Z. (2004). Huaxue Tongbao 67, 1-7. (In Chinese.)
Zhu, Y.-Q., Song, H.-B., Li, J.-R., Yao, C.-S., Hu, F.-Z., Zou, X.-M. \& Yang, H.-Z. (2004). Acta Cryst. E60, o196-o198.

Zhu, Y.-Q., Song, H.-B., Yao, C.-S., Gao, Y., Hu, F.-Z., Zou, X.-M. \& Yang, H.-Z. (2004). Acta Cryst. E60, o599-o601.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

